01 42 77 22 22
M.    Mme   



bibliothèques anciennes, boiseries anciennes,cheminées anciennes, parquet de Versailles, portes anciennes, etc.
Maison Pingeon depuis 1841

Christian Pingeon, Maître Ébéniste Expert
tel: 01 42 77 22 22
Formulaire de contact

            1741    1841           

Nos partenaires EVA - Circle

Cercle de l'Évaluation IA : Benchmarks, audits et bonnes pratiques pour les modèles d'IA

Cercle de l'Évaluation IA : Benchmarks, audits et bonnes pratiques pour les modèles d'IA

Le Cercle de l'Évaluation IA, une communauté dédiée à mesurer la performance et l'éthique des systèmes d'intelligence artificielle. Ce n'est pas juste une liste de métriques — c'est un cadre pour savoir pourquoi un modèle est fiable, et qui en est responsable. Vous ne pouvez pas déployer un modèle d'IA sans vérifier qu'il ne ment pas, qu'il ne biaise pas, et qu'il ne se casse pas après une mise à jour. C'est là que les benchmarks IA, des jeux de tests standardisés pour comparer les performances entrent en jeu. Et quand votre modèle est en production, les audits IA, des vérifications indépendantes pour détecter les risques cachés deviennent indispensables.

Les entreprises qui ignorent ces étapes paient cher : des erreurs factuelles dans les réponses, des fuites de données, des modèles dépréciés sans plan de sortie. Ici, on parle de ce qui compte vraiment : comment équilibrer vitesse et sécurité, comment choisir entre un modèle compressé et un autre, comment faire confiance à l'IA sans perdre le contrôle. Vous trouverez des guides pratiques sur la gestion des fournisseurs, les tests de régression, la vie privée différentielle, et surtout, comment éviter les pièges du vibe coding.

Que vous soyez ingénieur, product manager ou responsable de la conformité, ce que vous lisez ici ne vous aidera pas à briller en réunion — mais à éviter un crash en production.

Créer une feuille de route pour les capacités futures des modèles linguistiques d'entreprise

Créer une feuille de route pour les capacités futures des modèles linguistiques d'entreprise

Renee Serda janv.. 20 0

Une feuille de route LLM efficace relie la technologie aux résultats commerciaux. Découvrez les 5 piliers, les erreurs à éviter et les étapes concrètes pour déployer une stratégie d'IA d'entreprise qui dure en 2026.

Plus d’infos
Infrastructure Requirements for Serving Large Language Models in Production

Infrastructure Requirements for Serving Large Language Models in Production

Renee Serda janv.. 19 0

Déployer des modèles de langage de grande taille en production nécessite une infrastructure adaptée : mémoire GPU, stockage en couches, scaling dynamique et quantification. Découvrez les exigences réelles, les coûts et les meilleures pratiques pour éviter les échecs.

Plus d’infos
Biais de logit et interdiction de jetons dans les LLM : piloter les sorties sans reformation

Biais de logit et interdiction de jetons dans les LLM : piloter les sorties sans reformation

Renee Serda janv.. 18 4

Apprenez à contrôler précisément les sorties des modèles de langage sans les reformer, grâce au biais de logit et à l'interdiction de jetons. Une méthode efficace pour bloquer les mots indésirables et renforcer la sécurité.

Plus d’infos
Ce qui rend un modèle de langage 'grand' : au-delà du nombre de paramètres et vers les capacités émergentes

Ce qui rend un modèle de langage 'grand' : au-delà du nombre de paramètres et vers les capacités émergentes

Renee Serda janv.. 17 3

Ce qui fait un modèle de langage 'grand' n'est plus son nombre de paramètres, mais ses capacités émergentes. À partir de 62 milliards de paramètres, les modèles commencent à raisonner comme des humains. La prochaine révolution vient de la profondeur logique, pas de la taille.

Plus d’infos
Des modèles de Markov aux transformeurs : Histoire technique de l'IA générative

Des modèles de Markov aux transformeurs : Histoire technique de l'IA générative

Renee Serda janv.. 16 5

Découvrez l'évolution technique de l'IA générative, des modèles de Markov aux transformeurs, en passant par les LSTM, GAN et VAE. Une histoire de probabilités, d'attention et de puissance de calcul.

Plus d’infos
Apprentissage auto-supervisé pour l'IA générative : de la préformation à l'ajustement fin

Apprentissage auto-supervisé pour l'IA générative : de la préformation à l'ajustement fin

Renee Serda janv.. 15 4

L'apprentissage auto-supervisé est le moteur caché derrière les modèles d'IA générative comme GPT-4 et DALL-E 3. Il permet d'apprendre à partir de données non étiquetées, réduisant les coûts et augmentant les performances. Voici comment ça marche, de la préformation à l'ajustement fin.

Plus d’infos
Utilisation de logiciels open source en vibe coding : licences à privilégier et à éviter

Utilisation de logiciels open source en vibe coding : licences à privilégier et à éviter

Renee Serda janv.. 14 8

Découvrez quelles licences open source vous permettent d'utiliser en toute sécurité les outils de vibe coding pour créer des logiciels commerciaux, et celles qui risquent de vous entraîner dans un litige juridique.

Plus d’infos
Changelogs et decision logs : suivre les choix d'IA dans le temps pour une gouvernance fiable

Changelogs et decision logs : suivre les choix d'IA dans le temps pour une gouvernance fiable

Renee Serda janv.. 13 7

Les changelogs et decision logs sont essentiels pour suivre les choix d'IA dans le temps. Ils garantissent traçabilité, conformité et confiance, surtout avec le Règlement européen sur l'IA en vigueur depuis 2025.

Plus d’infos
Agents autonomes dans l'IA générative pour les processus métier : du plan à l'action

Agents autonomes dans l'IA générative pour les processus métier : du plan à l'action

Renee Serda janv.. 9 10

Les agents autonomes en IA générative transforment les processus métier en passant du plan à l'action sans intervention humaine. Découvrez comment ils fonctionnent, où ils sont utilisés, et pourquoi ils représentent l'avenir de l'automatisation.

Plus d’infos
Communauté et éthique pour les programmes d'IA générative : engagement des parties prenantes et transparence

Communauté et éthique pour les programmes d'IA générative : engagement des parties prenantes et transparence

Renee Serda janv.. 8 5

L'usage éthique de l'IA générative repose sur la transparence, l'engagement des parties prenantes et la responsabilité humaine. Découvrez comment les universités et les institutions appliquent ces principes en 2025.

Plus d’infos
Comités interfonctionnels pour une utilisation éthique des grands modèles linguistiques

Comités interfonctionnels pour une utilisation éthique des grands modèles linguistiques

Renee Serda janv.. 4 10

Les comités interfonctionnels sont devenus essentiels pour garantir que les grands modèles linguistiques soient utilisés de manière éthique, légale et sûre. Ils réunissent juridique, sécurité, RH et produit pour éviter les erreurs coûteuses et accélérer l’innovation responsable.

Plus d’infos
Chatbots de gouvernance et de conformité : Automatiser l'application des politiques avec les grands modèles linguistiques

Chatbots de gouvernance et de conformité : Automatiser l'application des politiques avec les grands modèles linguistiques

Renee Serda janv.. 1 8

Les chatbots de conformité alimentés par les grands modèles linguistiques automatisent l'application des politiques réglementaires, réduisent les coûts de 50 % et les erreurs de 75 %. Découvrez comment ils fonctionnent, où ils échouent, et comment les déployer efficacement.

Plus d’infos
Articles récents
Gestion des fournisseurs pour les plateformes de codage Vibe et les fournisseurs de modèles IA
Gestion des fournisseurs pour les plateformes de codage Vibe et les fournisseurs de modèles IA

Le codage Vibe accélère le développement logiciel, mais crée de nouveaux risques de gouvernance. Découvrez les 5 critères essentiels pour choisir et gérer vos fournisseurs de modèles IA en 2025, avec comparaisons concrètes et bonnes pratiques validées par les grandes entreprises.

Chatbots de gouvernance et de conformité : Automatiser l'application des politiques avec les grands modèles linguistiques
Chatbots de gouvernance et de conformité : Automatiser l'application des politiques avec les grands modèles linguistiques

Les chatbots de conformité alimentés par les grands modèles linguistiques automatisent l'application des politiques réglementaires, réduisent les coûts de 50 % et les erreurs de 75 %. Découvrez comment ils fonctionnent, où ils échouent, et comment les déployer efficacement.

Équilibrer les données pour le déploiement des grands modèles linguistiques multilingues
Équilibrer les données pour le déploiement des grands modèles linguistiques multilingues

Apprenez comment équilibrer les données d'entraînement pour que les grands modèles linguistiques soient aussi performants dans les langues à faibles ressources que dans les langues riches. Une approche scientifique qui réduit les coûts et améliore l'équité.

À propos de nous

Cercle de l'Évaluation IA est une communauté dédiée aux benchmarks, audits et bonnes pratiques pour mesurer la performance et l'éthique des systèmes d'intelligence artificielle. Découvrez des guides, cadres méthodologiques et études de cas pour fiabiliser vos modèles. Partagez et comparez des jeux de tests, métriques et outils open source. Restez informé des actualités et normes autour de l'évaluation des IA.



Annuaires | Referencement | Echanges de liens